Suka bereksperimen sambil menghitung rumus-rumus...?
Bagi rekan-rekan yang suka dan ingin memperdalam mata pelajaran fisika, sebaiknya tahu dan kenali dulu seluk beluk materi Fisika. Seperti pepatah mengatakan, tak kenal maka tak sayang.
BERIKUT SEPUTAR TENTANG FISIKA..!!!
Fisika adalah sains atau ilmu tentang alam dalam makna yang terluas. Fisika mempelajari gejala alam yang tidak hidup atau materi dalam lingkup ruang dan waktu. Para fisikawan atau ahli fisika mempelajari perilaku dan sifat materi dalam bidang yang sangat beragam, mulai dari partikel submikroskopis yang membentuk segala materi (fisika partikel) hingga perilaku materi alam semesta sebagai satu kesatuan kosmos. Beberapa sifat yang dipelajari dalam fisika merupakan sifat yang ada dalam semua sistem materi yang ada, seperti hukum kekekalan energi. Sifat semacam ini sering disebut sebagai hukum fisika. Fisika sering disebut sebagai “ilmu paling mendasar”, karena setiap ilmu alam lainnya (biologi, kimia, geologi, dan lain-lain) mempelajari jenis sistem materi tertentu yang mematuhi hukum fisika. Misalnya, kimia adalah ilmu tentang molekul dan zat kimia yang dibentuknya. Sifat suatu zat kimia ditentukan oleh sifat molekul yang membentuknya, yang dapat dijelaskan oleh ilmu fisika seperti mekanika kuantum, termodinamika, dan elektromagnetika.
Fisika juga berkaitan erat dengan matematika. Teori fisika banyak dinyatakan dalam notasi matematis, dan matematika yang digunakan biasanya lebih rumit daripada matematika yang digunakan dalam bidang sains lainnya. Perbedaan antara fisika dan matematika adalah: fisika berkaitan dengan pemerian dunia material, sedangkan matematika berkaitan dengan pola-pola abstrak yang tak selalu berhubungan dengan dunia material. Namun, perbedaan ini tidak selalu tampak jelas. Ada wilayah luas penelitan yang beririsan antara fisika dan matematika, yakni fisika matematis, yang mengembangkan struktur matematis bagi teori-teori fisika.
Fisika (Bahasa Yunani: physikos, "alamiah", dan physis, "Alam") adalah sains atau ilmu tentang alam dalam makna yang terluas. Fisika mempelajari gejala alam yang tidak hidup atau materi dalam lingkup ruang dan waktu. Para fisikawan atau ahli fisika mempelajari perilaku dan sifat materi dalam bidang yang sangat beragam, mulai dari partikel submikroskopis yang membentuk segala materi (fisika partikel) hingga perilaku materi alam semesta sebagai satu kesatuan kosmos.
Beberapa sifat yang dipelajari dalam fisika merupakan sifat yang ada dalam semua sistem materi yang ada, seperti hukum kekekalan energi. Sifat semacam ini sering disebut sebagai hukum fisika. Fisika sering disebut sebagai "ilmu paling mendasar", karena setiap ilmu alam lainnya (biologi, kimia, geologi, dan lain-lain) mempelajari jenis sistem materi tertentu yang mematuhi hukum fisika. Misalnya, kimia adalah ilmu tentang molekul dan zat kimia yang dibentuknya. Sifat suatu zat kimia ditentukan oleh sifat molekul yang membentuknya, yang dapat dijelaskan oleh ilmu fisika seperti mekanika kuantum, termodinamika, dan elektromagnetika.
Fisika Teoretis Dan Eksperimental
Teori Fisika Utama
Bagi rekan-rekan yang suka dan ingin memperdalam mata pelajaran fisika, sebaiknya tahu dan kenali dulu seluk beluk materi Fisika. Seperti pepatah mengatakan, tak kenal maka tak sayang.
BERIKUT SEPUTAR TENTANG FISIKA..!!!
Fisika adalah sains atau ilmu tentang alam dalam makna yang terluas. Fisika mempelajari gejala alam yang tidak hidup atau materi dalam lingkup ruang dan waktu. Para fisikawan atau ahli fisika mempelajari perilaku dan sifat materi dalam bidang yang sangat beragam, mulai dari partikel submikroskopis yang membentuk segala materi (fisika partikel) hingga perilaku materi alam semesta sebagai satu kesatuan kosmos. Beberapa sifat yang dipelajari dalam fisika merupakan sifat yang ada dalam semua sistem materi yang ada, seperti hukum kekekalan energi. Sifat semacam ini sering disebut sebagai hukum fisika. Fisika sering disebut sebagai “ilmu paling mendasar”, karena setiap ilmu alam lainnya (biologi, kimia, geologi, dan lain-lain) mempelajari jenis sistem materi tertentu yang mematuhi hukum fisika. Misalnya, kimia adalah ilmu tentang molekul dan zat kimia yang dibentuknya. Sifat suatu zat kimia ditentukan oleh sifat molekul yang membentuknya, yang dapat dijelaskan oleh ilmu fisika seperti mekanika kuantum, termodinamika, dan elektromagnetika.
Fisika juga berkaitan erat dengan matematika. Teori fisika banyak dinyatakan dalam notasi matematis, dan matematika yang digunakan biasanya lebih rumit daripada matematika yang digunakan dalam bidang sains lainnya. Perbedaan antara fisika dan matematika adalah: fisika berkaitan dengan pemerian dunia material, sedangkan matematika berkaitan dengan pola-pola abstrak yang tak selalu berhubungan dengan dunia material. Namun, perbedaan ini tidak selalu tampak jelas. Ada wilayah luas penelitan yang beririsan antara fisika dan matematika, yakni fisika matematis, yang mengembangkan struktur matematis bagi teori-teori fisika.
Fisika (Bahasa Yunani: physikos, "alamiah", dan physis, "Alam") adalah sains atau ilmu tentang alam dalam makna yang terluas. Fisika mempelajari gejala alam yang tidak hidup atau materi dalam lingkup ruang dan waktu. Para fisikawan atau ahli fisika mempelajari perilaku dan sifat materi dalam bidang yang sangat beragam, mulai dari partikel submikroskopis yang membentuk segala materi (fisika partikel) hingga perilaku materi alam semesta sebagai satu kesatuan kosmos.
Beberapa sifat yang dipelajari dalam fisika merupakan sifat yang ada dalam semua sistem materi yang ada, seperti hukum kekekalan energi. Sifat semacam ini sering disebut sebagai hukum fisika. Fisika sering disebut sebagai "ilmu paling mendasar", karena setiap ilmu alam lainnya (biologi, kimia, geologi, dan lain-lain) mempelajari jenis sistem materi tertentu yang mematuhi hukum fisika. Misalnya, kimia adalah ilmu tentang molekul dan zat kimia yang dibentuknya. Sifat suatu zat kimia ditentukan oleh sifat molekul yang membentuknya, yang dapat dijelaskan oleh ilmu fisika seperti mekanika kuantum, termodinamika, dan elektromagnetika.
Fisika juga berkaitan erat dengan matematika. Teori fisika banyak dinyatakan
dalam notasi matematis, dan matematika yang digunakan biasanya lebih rumit
daripada matematika yang digunakan dalam bidang sains lainnya. Perbedaan antara
fisika dan matematika adalah: fisika berkaitan dengan pemerian dunia material,
sedangkan matematika berkaitan dengan pola-pola abstrak yang tak selalu
berhubungan dengan dunia material. Namun, perbedaan ini tidak selalu tampak
jelas. Ada wilayah luas penelitan yang beririsan antara fisika dan matematika,
yakni fisika matematis, yang mengembangkan struktur matematis bagi teori-teori
fisika.
Fisika Teoretis Dan Eksperimental
Budaya penelitian fisika berbeda dengan
ilmu lainnya karena adanya pemisahan teori dan eksperimen. Sejak abad kedua
puluh, kebanyakan fisikawan perseorangan mengkhususkan diri meneliti dalam
fisika teoretis atau fisika eksperimental saja, dan pada abad kedua puluh,
sedikit saja yang berhasil dalam kedua bidang tersebut. Sebaliknya, hampir
semua teoris dalam biologi dan kimia juga merupakan eksperimentalis yang
sukses.
Gampangnya, teoris berusaha mengembangkan teori yang dapat menjelaskan hasil eksperimen yang telah dicoba dan dapat memperkirakan hasil eksperimen yang akan datang. Sementara itu, eksperimentalis menyusun dan melaksanakan eksperimen untuk menguji perkiraan teoretis. Meskipun teori dan eksperimen dikembangkan secara terpisah, mereka saling bergantung. Kemajuan dalam fisika biasanya muncul ketika eksperimentalis membuat penemuan yang tak dapat dijelaska teori yang ada, sehingga mengharuskan dirumuskannya teori-teori baru. Tanpa eksperimen, penelitian teoretis sering berjalan ke arah yang salah; salah satu contohnya adalah teori-M, teori populer dalam fisika energi-tinggi, karena eksperimen untuk mengujinya belum pernah disusun.
Gampangnya, teoris berusaha mengembangkan teori yang dapat menjelaskan hasil eksperimen yang telah dicoba dan dapat memperkirakan hasil eksperimen yang akan datang. Sementara itu, eksperimentalis menyusun dan melaksanakan eksperimen untuk menguji perkiraan teoretis. Meskipun teori dan eksperimen dikembangkan secara terpisah, mereka saling bergantung. Kemajuan dalam fisika biasanya muncul ketika eksperimentalis membuat penemuan yang tak dapat dijelaska teori yang ada, sehingga mengharuskan dirumuskannya teori-teori baru. Tanpa eksperimen, penelitian teoretis sering berjalan ke arah yang salah; salah satu contohnya adalah teori-M, teori populer dalam fisika energi-tinggi, karena eksperimen untuk mengujinya belum pernah disusun.
Teori Fisika Utama
Meskipun fisika membahas beraneka ragam
sistem, ada beberapa teori yang digunakan secara keseluruhan dalam fisika,
bukan di satu bidang saja. Setiap teori ini diyakini benar adanya, dalam
wilayah kesahihan tertentu. Contohnya, teori mekanika klasik dapat menjelaskan
pergerakan benda dengan tepat, asalkan benda ini lebih besar daripada atom dan
bergerak dengan kecepatan jauh lebih lambat daripada kecepatan cahaya.
Teori-teori ini masih terus diteliti; contohnya, aspek mengagumkan dari
mekanika klasik yang dikenal sebagai teori chaos ditemukan pada abad kedua
puluh, tiga abad setelah dirumuskan oleh Isaac Newton. Namun, hanya sedikit
fisikawan yang menganggap teori-teori dasar ini menyimpang. Oleh karena itu,
teori-teori tersebut digunakan sebagai dasar penelitian menuju topik yang lebih
khusus, dan semua pelaku fisika, apa pun spesialisasinya, diharapkan memahami
teori-teori tersebut.
Bidang Utama Dalam Fisika
Bidang Utama Dalam Fisika
Riset dalam fisika dibagi beberapa
bidang yang mempelajari aspek yang berbeda dari dunia materi. Fisika benda
kondensi, diperkirakan sebagai bidang fisika terbesar, mempelajari properti
benda besar, seperti benda padat dan cairan yang kita temui setiap hari, yang
berasal dari properti dan interaksi mutual dari atom. Bidang Fisika
atomik,
molekul, dan optik berhadapan dengan individual atom dan molekul, dan cara
mereka menyerap dan mengeluarkan cahaya. Bidang Fisika partikel, juga dikenal
sebagai "Fisika energi-tinggi", mempelajari properti partikel super
kecil yang jauh lebih kecil dari atom, termasuk partikel dasar yang membentuk
benda lainnya. Terakhir, bidang Astrofisika menerapkan hukum fisika untuk
menjelaskan fenomena astronomi, berkisar dari matahari dan objek lainnya dalam
tata surya ke jagad raya secara keseluruhan.
Bidang Yang Berhubungan
Arah Masa Depan
Dalam fisika partikel, potongan pertama dari bukti eksperimen untuk fisika di luar Model Standar telah mulai menghasilkan. Yang paling terkenal adalah penunjukan bahwa neutrino memiliki massa bukan-nol. Hasil eksperimen ini nampaknya telah menyelesaikan masalah solar neutrino yang telah berdiri-lama dalam fisika matahari. Fisika neutrino besar merupakan area riset eksperimen dan teori yang aktif. Dalam beberapa tahun ke depan, pemercepat partikel akan mulai meneliti skala energi dalam jangkauan TeV, yang di mana para eksperimentalis berharap untuk menemukan bukti untuk Higgs boson dan partikel supersimetri.
Para teori juga mencoba untuk menyatikan mekanika kuantum dan relativitas umum menjadi satu teori gravitasi kuantum, sebuah program yang telah berjalan selama setengah abad, dan masih belum menghasilkan buah. Kandidat atas berikutnya adalah Teori-M, teori superstring, dan gravitasi kuantum loop.
Bidang Yang Berhubungan
Ada banyak area riset yang mencampur
fisika dengan bidang lainnya. Contohnya, bidang biofisika yang mengkhususkan ke
peranan prinsip fisika dalam sistem biologi, dan bidang kimia kuantum yang
mempelajari bagaimana teori kuantum mekanik memberi peningkatan terhadap sifat
kimia dari atom dan molekul.
Sejak zaman purbakala, orang telah
mencoba untuk mengerti sifat dari benda: mengapa objek yang tidak ditopang
jatuh ke tanah, mengapa material yang berbeda memiliki properti yang berbeda,
dan seterusnya. Lainnya adalah sifat dari jagad raya, seperti bentuk Bumi dan
sifat dari objek celestial seperti Matahari dan Bulan.
Beberapa teori diusulkan dan banyak yang
salah. Teori tersebut banyak tergantung dari istilah filosofi, dan tidak pernah
dipastikan oleh eksperimen sistematik seperti yang populer sekarang ini. Ada
pengecualian dan anakronisme: contohnya, pemikir Yunani Archimedes menurunkan
banyak deskripsi kuantitatif yang benar dari mekanik dan hidrostatik.
Pada awal abad 17, Galileo membuka penggunaan eksperimen untuk memastikan kebenaran teori fisika, yang merupakan kunci dari metode sains. Galileo memformulasikan dan berhasil mengetes beberapa hasil dari dinamika mekanik, terutama Hukum Inert. Pada 1687, Isaac Newton menerbitkan Filosofi Natural Prinsip Matematika, memberikan penjelasan yang jelas dan teori fisika yang sukses: Hukum gerak Newton, yang merupakan sumber dari mekanika klasik; dan Hukum Gravitasi Newton, yang menjelaskan gaya dasar gravitasi. Kedua teori ini cocok dalam eksperimen. Prinsipia juga memasukan beberapa teori dalam dinamika fluid. Mekanika klasik dikembangkan besar-besaran oleh Joseph-Louis de Lagrange, William Rowan Hamilton, dan lainnya, yang menciptakan formula, prinsip, dan hasil baru. Hukum Gravitas memulai bidang astrofisika, yang menggambarkan fenomena astronomi menggunakan teori fisika.
Pada awal abad 17, Galileo membuka penggunaan eksperimen untuk memastikan kebenaran teori fisika, yang merupakan kunci dari metode sains. Galileo memformulasikan dan berhasil mengetes beberapa hasil dari dinamika mekanik, terutama Hukum Inert. Pada 1687, Isaac Newton menerbitkan Filosofi Natural Prinsip Matematika, memberikan penjelasan yang jelas dan teori fisika yang sukses: Hukum gerak Newton, yang merupakan sumber dari mekanika klasik; dan Hukum Gravitasi Newton, yang menjelaskan gaya dasar gravitasi. Kedua teori ini cocok dalam eksperimen. Prinsipia juga memasukan beberapa teori dalam dinamika fluid. Mekanika klasik dikembangkan besar-besaran oleh Joseph-Louis de Lagrange, William Rowan Hamilton, dan lainnya, yang menciptakan formula, prinsip, dan hasil baru. Hukum Gravitas memulai bidang astrofisika, yang menggambarkan fenomena astronomi menggunakan teori fisika.
Dari sejak abad 18 dan seterusnya,
termodinamika dikembangkan oleh Robert Boyle, Thomas Young, dan banyak lainnya.
Pada 1733, Daniel Bernoulli menggunakan argumen statistika dalam mekanika
klasik untuk menurunkan hasil termodinamika, memulai bidang mekanika statistik.
Pada 1798, Benjamin Thompson mempertunjukkan konversi kerja mekanika ke dalam panas,
dan pada 1847 James Joule menyatakan hukum konservasi energi, dalam bentuk
panasa juga dalam energi mekanika.
Sifat listrik dan magnetisme dipelajari
oleh Michael Faraday, George Ohm, dan lainnya. Pada 1855, James Clerk Maxwell
menyatukan kedua fenomena menjadi satu teori elektromagnetisme, dijelaskan oleh
persamaan Maxwell. Perkiraan dari teori ini adalah cahaya adalah gelombang
elektromagnetik.
Arah Masa Depan
Riset fisika mengalami kemajuan konstan
dalam banyak bidang, dan masih akan tetap begitu jauh di masa depan. Dalam
fisika benda kondensi, masalah teoritis tak terpecahkan terbesar adalah
penjelasan superkonduktivitas suhu-tinggi. Banyak usaha dilakukan untuk membuat
spintronik dan komputer kuantum bekerja.
Dalam fisika partikel, potongan pertama dari bukti eksperimen untuk fisika di luar Model Standar telah mulai menghasilkan. Yang paling terkenal adalah penunjukan bahwa neutrino memiliki massa bukan-nol. Hasil eksperimen ini nampaknya telah menyelesaikan masalah solar neutrino yang telah berdiri-lama dalam fisika matahari. Fisika neutrino besar merupakan area riset eksperimen dan teori yang aktif. Dalam beberapa tahun ke depan, pemercepat partikel akan mulai meneliti skala energi dalam jangkauan TeV, yang di mana para eksperimentalis berharap untuk menemukan bukti untuk Higgs boson dan partikel supersimetri.
Para teori juga mencoba untuk menyatikan mekanika kuantum dan relativitas umum menjadi satu teori gravitasi kuantum, sebuah program yang telah berjalan selama setengah abad, dan masih belum menghasilkan buah. Kandidat atas berikutnya adalah Teori-M, teori superstring, dan gravitasi kuantum loop.
Banyak fenomena astronomikal dan
kosmologikal belum dijelaskan secara memuaskan, termasuk keberadaan sinar
kosmik energi ultra-tinggi, asimetri baryon, pemercepatan alam semesta dan
percepatan putaran anomali galaksi.
Meskipun banyak kemajuan telah dibuat
dalam energi-tinggi, kuantum, dan fisika astronomikal, banyak fenomena
sehari-hari lainnya, menyangkut sistem kompleks, chaos, atau turbulens masih
dimengerti sedikit saja. Masalah rumit yang sepertinya dapat dipecahkan oleh
aplikasi pandai dari dinamika dan mekanika, seperti pembentukan tumpukan pasir,
"node" dalam air "trickling", teori katastrof, atau
pengurutan-sendiri dalam koleksi heterogen yang bergetar masih tak terpecahkan.
Fenomena rumit ini telah menerima perhatian yang semakin banyak sejak 1970-an
untuk beberapa alasan, tidak lain dikarenakan kurangnya metode matematika
modern dan komputer yang dapat menghitung sistem kompleks untuk dapat
dimodelkan dengan cara baru. Hubungan antar disiplin dari fisika kompleks juga
telah meningkat, seperti dalam pelajaran turbulens dalam aerodinamika atau
pengamatan pola pembentukan dalam sistem biologi. Pada 1932, Horrace Lamb
meramalkan:
”Saya sudah tua sekarang, dan ketika saya meninggal dan pergi ke surga ada dua hal yang saya harap dapat diterangkan. Satu adalah elektrodinamika kuantum, dan satu lagi adalah gerakan turbulens dari fluida. Dan saya lebih optimis terhadap yang pertama”.
”Saya sudah tua sekarang, dan ketika saya meninggal dan pergi ke surga ada dua hal yang saya harap dapat diterangkan. Satu adalah elektrodinamika kuantum, dan satu lagi adalah gerakan turbulens dari fluida. Dan saya lebih optimis terhadap yang pertama”.
0 Response to "ARTIKEL PENDIDIKAN TENTANG SEPUTAR SELUK BELUK MATA PELAJARAN FISIKA"
Posting Komentar